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Temperature dependence of the single-ion lattice anisotropy
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Abstract. In investigations of the orientation of the magnetization of thin ferromagnetic
films, the single-ion anisotropy coefficients play a crucial role. By applying a thermodynamic
perturbation theory we calculate the temperature dependence of the second- and fourth-order
single-ion anisotropies for a Heisenberg monolayer with Tyablikov decoupling (the random-phase
approximation, RPA) and compare with results obtained from mean-field theory. In order to assess
the accuracy of the Tyablikov (RPA) and also the Callen decoupling approximations in the Green’s
function many-body theory, we calculate the magnetization of a Heisenberg spin pair and of a
ferromagnetic monolayer, and compare the results with exact solutions available for the spin pair
with arbitrary spins, and a recent quantum Monte Carlo calculation (for spin 1/2) for the monolayer.
The RPA decoupling provides a fairly good approximation to the exact results for the magnetization
over the whole temperature range of interest. Because of this, we expect the calculated anisotropy
coefficients to be approximated well by this method.

1. Introduction

New experimental results concerning the temperature dependence of the magnetic anisotropy
and the resulting orientation of the magnetization of thin films and multilayer systems [1] have
provided an incentive for theoretical investigations [2]. Because of its feasibility, the mean-field
theory (MFT) for a Heisenberg Hamiltonian plus anisotropy terms has been primarily applied;
for a review see [3]. In such two-dimensional (2D) systems, however, correlations beyond
MFT should be taken into account, e.g. by using many-body Green’s function theory [4, 5],
which is capable of treating the problem over the whole temperature range of interest. In this
study, we apply this theory in order to calculate the temperature dependence of the second-
and fourth-order single-ion anisotropy coefficients of a ferromagnetic Heisenberg monolayer
using the Tyablikov decoupling (the random-phase approximation, RPA) [6].

We start by examining the accuracy of the RPA, and also going beyond the RPA, for
the Callen decoupling [7] for two different spin systems for which exact solutions for the
magnetization are available. First we consider the Heisenberg spin pair. For this case we
calculate the magnetization for arbitrary spinsS1 andS2. Secondly, we treat the Heisenberg
monolayer withS = 1/2 spins. For this system, a recent quantum Monte Carlo (QMC)
calculation [8] can be used as an ‘exact’ reference for the corresponding results obtained from
the RPA and Callen decoupling. In both systems, the Heisenberg exchange coupling and an
external magnetic field are taken into account. Results for the magnetization calculated using
the MFT are also presented for comparison.
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As the main subject of the paper we present results of calculations of the temperature
dependence of the second- and fourth-order single-ion anisotropy coefficients for the
Heisenberg monolayer (withS = 2 andS = 10 spins as examples), and compare the results
obtained with RPA and MFT. Because the result for the magnetization calculated with RPA
is, in contrast to that from MFT, very close to the exact result, we expect that the anisotropy
coefficients calculated with RPA to also be quite accurate and to represent a considerable
improvement over the MFT results.

2. The Heisenberg spin pair

The Hamiltonian for the Heisenberg spin pair with spinsS1 andS2 with exchange coupling
constantJ in an external magnetic fieldB = Bez reads

H = −B(Sz1 + Sz2)−
J

2
(S1 · S2 + S2 · S1). (1)

In order to calculate the magnetization

〈Sz〉 = −∂F/∂B (2)

from the free energyF = −β−1 lnZ, with the inverse temperatureβ = 1/(kBT ) andkB the
Boltzmann constant, one has to determine the partition function

Z = Tr exp(−βH) =
∑
i

exp(−β εi)

from the eigenvaluesεi of the Hamiltonian matrix

〈S1, S2, ST ,MT |H |S1, S2, ST ,MT 〉. (3)

Using the relation 2S1 · S2 = S2
T − S2

1 − S2
2, the(2S1 + 1)(2S2 + 1) eigenvaluesε(ST ,MT )

are determined by

ε(ST ,MT ) = −J
2

(
ST (ST + 1)− S1(S1 + 1)− S2(S2 + 1)

)
− BMT (4)

where the total spin quantum number is denoted byST with values running from|S1 − S2| to
S1 + S2, and the total magnetic quantum number isMT = M1 +M2 = −ST , . . . , ST .

The exact expression for the total magnetization is then obtained from equation (2):

〈Sz〉 =
(∑

ST

∑
MT

MT e−βε(ST ,MT )

)/(∑
ST

∑
MT

e−βε(ST ,MT )

)
. (5)

As an example we consider the case whereS1 = S2 = 1. The(2S1 + 1)(2S2 + 1) = 9
eigenvalues are obtained from equation (4), and the exact analytical result for the magnetization
per spin reads

〈Sz〉 = 2 sinh(2βB) exp(βJ ) + 2 cosh(βJ ) sinh(βB)

2 exp(βJ ) cosh(2βB) + 4 cosh(βJ ) cosh(βB) + exp(−2βJ ) + exp(βJ )
. (6)

Next we compare the exact magnetization of the two-spin system with that obtained from
many-body Green’s function techniques (RPA and Callen decoupling). We use the set of
Green’s functions in the energy representation [5]

G
(n)
ij = 〈〈S+

i ; (Szj )nS−j 〉〉 i, j = 1, 2 (7)

with the respective equations of motion

ω〈〈S+
i ; (Szj )nS−j 〉〉 = A(n)ij + 〈〈[S+

i , H ]; (Szj )nS−j 〉〉. (8)
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The inhomogeneities are given by

A
(n)
ij = A(n)i δij = 〈[S+

i , (S
z
j )
nS−j ]〉

A
(n)
i = 2〈(Szi − 1)nSzi 〉 + 〈{(Szi − 1)n − (Szi )n}{S(S + 1)− Szi − (Szi )2}〉.

(9)

Evaluating the commutator [S+
i , H ] occurring on the right-hand side of equation (8) leads to

higher-order Green’s functions which have to be approximated. In the case of a homogeneous
system, i.e. where〈Szi 〉 = 〈Sz〉, the RPA consists in the decoupling [6]

〈〈(Szi S+
j − S+

i S
z
j ); (Szi )nS−i 〉〉 ≈ 〈Sz〉(G(n)

ji −G(n)
ii ). (10)

The equations of motion then reduce to a set of linear eigenvalue equations from which the
Green’s functions can be determined. For simplicity we focus on the case whereS1 = S2. Then
we have to consider only the Green’s functionsG(n)

11 andG(n)
21 , and the equations determining

the Green’s functions read(
ω − B − J 〈Sz〉 J 〈Sz〉

J 〈Sz〉 ω − B − J 〈Sz〉
)(

G
(n)
11

G
(n)
21

)
=
(
A
(n)
1
0

)
. (11)

To determine the magnetization〈Sz〉 we needG(n)
11 . From equation (11) one derives

G
(n)
11 =

1

2

∑
i=1,2

A
(n)
1

ω − ωi with ω1 = B andω2 = B + 2J 〈Sz〉. (12)

For spinS one obtains a set of coupled equations forn = 0, 1, . . . ,2S − 1 from the spectral
theorem [4]:

〈(Sz1)nS−1 S+
1 〉 = S(S + 1)〈(Sz1)n〉 − 〈(Sz1)n+1〉 − 〈(Sz1)n+2〉
= lim

δ→0

i

2π

∫
dω

1

eβω − 1

(
G
(n)
11 (ω + iδ)−G(n)

11 (ω − iδ)
)

= 1

2
A
(n)
1

∑
i

(
eβωi − 1

)−1
(13)

where the largest moments〈(Sz1)2S+1〉 can be expressed in terms of lower moments with the
help of the relation

r=+S∏
r=−S

(Sz1 − r) = 0.

For the case of spinS = 1, one has to solve the equations forn = 0 andn = 1 from
which the RPA result for the magnetization〈Sz〉 is obtained:

〈Sz〉RPAS=1 =
1 +m1 +m2

1 + 3
2(m1 +m2) + 3

4(m1 +m2)2
(14)

with

m1 =
(
eβB − 1

)−1
and m2 =

(
eβ(B+2J 〈Sz〉) − 1

)−1
. (15)

Now we perform an analogous calculation with the decoupling procedure proposed by Callen
[7], which replaces equation (10) by

〈〈Szi Szj − S+
i S

z
j ; (Szi )nS−i 〉〉 ≈ 〈Sz〉(G(n)

ji −G(n)
ii )− α

(〈(Szi )nS−i S+
j 〉G(n)

ii − 〈S−j (Szi )nSzi 〉G(n)
ji

)
(16)

with α = 〈Sz〉/2S2. Forα = 0, one recovers the RPA decoupling.
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Using this decoupling in the equations of motion and determining the Green’s functions
and the correlation functions, we obtain a system of coupled equations for expectation values
which for spinS = 1 reads

〈Sz〉 = (3〈(Sz)2〉 − 〈Sz〉 − 2
)b1m

1
1 + a1m

1
2

a1 + b1
+ 〈(Sz)2〉 (17)

〈(Sz)2〉 = 2− 〈Sz〉(1 +m0
1 +m0

2) (18)

〈S−1 S+
2 〉 = 〈Sz〉(m0

1 −m0
2) (19)

〈Sz1S−1 S+
2 〉 =

(
3〈(Sz)2〉 − 〈Sz〉 − 2

)a1(m
1
1−m1

2)

a1 + b1
(20)

where

m0
1 = m1

1 =
(
eβB − 1

)−1
(21)

m0
2 =

(
eβ(B+J 〈Sz〉(2+〈S−1 S+

2 〉)) − 1
)−1

(22)

m1
2 =

(
eβ(B+J 〈Sz〉(2+〈Sz1S−1 S+

1 〉+〈S−1 S+
2 〉/2)) − 1

)−1
(23)

a1 = J 〈Sz〉
(

1 +
1

2
〈Sz1S−1 S+

2 〉
)

(24)

b1 = J 〈Sz〉
(

1 +
1

2
(〈Sz1S−1 S+

2 〉 + 〈S−1 S+
2 〉)
)
. (25)

These equations have been solved numerically.
In figure 1 we compare the exact results for the magnetization as a function of the

temperature for theS1 = S2 = 1 case, equation (6), with those for the RPA, the Callen

Figure 1. The temperature dependence of the magnetization〈Sz〉 of the Heisenberg spin pair with
S1 = S2 = 1. The exact result, equation (6), is compared with that from mean-field theory (MFT),
the RPA, and the Callen decoupling. The RPA and the Callen results are indistinguishable within
the line thickness of the figure. By amplifying the scale we show, in the inset, that the RPA is
slightly better than the Callen decoupling. We have usedJ/B = 100.
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decoupling, and for the mean-field theory. The latter reads

〈Sz〉MFTS=1 =
1 +m

1 + 3m + 3m2
with m = (eβ(B+J 〈Sz〉/2) − 1

)−1
. (26)

We useJ = 100 for the exchange coupling constant, andB = 1 for the magnetic field. These
values correspond to a rare-earth ferromagnet in an external magnetic field of about 1 T.

One observes that the RPA and Callen approximations are fairly close to the exact result
and yield a substantial improvement over MFT. Despite the fact that additional correlations
are taken into account in the Callen decoupling, the result of the latter is very close to and
practically indistinguishable within the line thickness from the RPA result. With an amplified
scale, the inset in figure 1 shows that the result of the Callen decoupling is unexpectedly slightly
worse than that of the RPA. This is, however, consistent with the finding of Callen [7] that his
procedure is superior to RPA only for higher spins when calculating the Curie temperature of
a bulk ferromagnet.

One may apply the methods described above to calculate the magnetization of larger
Heisenberg spin clusters of a given size and shape. An exact calculation of the magnetization
is prohibitively difficult in this case. However, the Green’s function theory is still a tractable
method since it leads to a linear set of eigenvalue equations which can be solved numerically.
The method allows one to take into account approximately the spin correlations over the whole
temperature range of interest. We emphasize that the magnetization of such cluster systems
including the collective excitations has been calculated up to now by use of the Holstein–
Primakoff approximation [9], which is valid for low temperatures only.

3. The Heisenberg monolayer of a square lattice forS = 1/2

In this section we calculate the magnetization of a Heisenberg monolayer with spinS = 1/2
for a square lattice with RPA, Callen decoupling, and MFT. We use as an ‘exact’ reference a
recent quantum Monte Carlo (QMC) calculation [8]. Before the latter result was published it
was not possible to check the quality of the various approximations for the present case.

The Hamiltonian of the Heisenberg monolayer with a magnetic field reads

H0 = −B
∑
l

Szl −
J

2

∑
〈kl〉
Sk · Sl (27)

where〈kl〉means summation over nearest neighbours only. An applied magnetic field and/or
magnetic anisotropies will induce a long-range magnetic order with a Curie temperature of the
order of magnitude of the exchange coupling [10]. Note that, owing to the transverse magnetic
fluctuations with long wavelengths, anisotropic 2D Heisenberg magnet does not exhibit a
finite magnetization at finite temperatures (the Mermin–Wagner theorem [11]).

In order to calculate the magnetization〈Szi 〉 for the case of spinS = 1/2:

〈Szi 〉 = 1/2− 〈S−i S+
i 〉 (28)

the correlation function〈S−i S+
i 〉 is obtained from the Green’s functionGij = 〈〈S+

i ; S−j 〉〉 by
using the spectral theorem; see equation (12). Within the RPA and the Callen decoupling, the
Green’s function in momentum space is given by

Gk(ω) = 2〈Sz〉
ω − Eαk

(29)

with the magnon dispersion relation

Eαk = B + 〈Sz〉J (4− 2γk)

(
1 +

α

N

∑
k

γk coth(βEαk /2)

)
. (30)
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For a square lattice (lattice constanta0 = 1), γk = coskx + cosky , andN is the number
of lattice sites. Thex- andy-axes determine the monolayer plane. The RPA decoupling
corresponds toα = 0, and the Callen decoupling toα = 2〈Sz〉 [7]; see equation (16).

Inserting equations (29) and (30) into equation (28) yields an equation for the magnet-
ization〈Sz〉, which has to be solved self-consistently:

〈Sz〉 = 1/2− 〈Sz〉 1

π2

∫ π

0
dkx

∫ π

0
dky (coth(βEαk /2)− 1) (31)

where the sum over the momenta,
∑

k, has been replaced by an integral over the first Brillouin
zone.

In figure 2 we compare the ‘exact’ quantum Monte Carlo calculation [8] of the magnet-
ization for the spin-S = 1/2 monolayer with results obtained from RPA and Callen decoupling.
For comparison we also show the MFT results. Following reference [8], we use the parameters
J = 4, 10, 20, andB = 1. We find that the RPA calculations are fairly close to the QMC
results. In the present case, the RPA is definitely closer to the exact result than the result
obtained from the Callen decoupling, which is expected to improve for higher spins [7]. For
higher spins, however, QMC calculations are not available as a reference. Both RPA and Callen
calculations give a substantial improvement over MFT. We also state that the Green’s function
RPA result yields a better overall agreement with the QMC results than the magnetization
calculated with the Schwinger boson approximations [8], which are, however, obtained for a
continuous monolayer and not for a discrete lattice.

4. Temperature dependence of the lattice anisotropy coefficients for a monolayer in
MFT and the RPA

Because the RPA outlined in the previous sections is already close to the exact results
for the magnetization, we calculate the temperature-dependent (effective) lattice anisotropy
coefficients of a square layer using RPA. These coefficients are accessible experimentally by
measuring the orientation of the magnetization of thin films, for example. They are defined as
the coefficients in an expansion of the free energy in powers of the cosine ofθ [3], which is
the polar angle between the magnetization〈S〉 and the normal to the film surface:

F(T , θ) = F0(T )− K2(T ) cos2 θ − K4(T ) cos4 θ −B · 〈S〉. (32)

In reference [3], the effective anisotropy coefficients have been calculated within the mean-
field theory for the magnetization. The total HamiltonianH = H0 + V is separated
into an unperturbed partH0 consisting of the exchange coupling and the magnetic field
(cf. equation (27)), and a perturbationV which denotes either the second- or the fourth-order
single-ion lattice anisotropy:

V = −Kn
∑
l

(Szl )
n n = 2, 4. (33)

Within first-order thermodynamic perturbation theory (expansion in 1/kBT ) theKn(T ) are
given by

Kn(T ) = Knfn(T ) (34)

where the temperature dependence is introduced solely by the functionsfn(T ) which are
expressed in terms of expectation values〈(Sz)n〉0 with respect to the unperturbed Hamiltonian
H0 [3,12]:

f2(T ) =
(
3〈(Sz)2〉0 − S(S + 1)

)
/2 (35)

f4(T ) =
[
35〈(Sz)4〉0 −

(
30S(S + 1)− 25

)〈(Sz)2〉0 + 3S(S + 1)
(
S(S + 1)− 2

)]
/8. (36)
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Figure 2. The temperature dependence of the magnetization〈Sz〉 of a Heisenberg monolayer for
a square lattice withS = 1/2. Comparison is made between the ‘exact’ quantum Monte Carlo
(QMC) result [8] and the results obtained with MFT, the RPA, and Callen decoupling. We have
used (a)J/B = 20, (b)J/B = 10, and (c)J/B = 4.

To demonstrate the significant change in the temperature dependence of the anisotropy
coefficients, we compare the results obtained from the mean-field theory (MFT, reference [3])
and from the RPA decoupling for a Heisenberg monolayer of a square lattice. In the latter
case, the magnetization〈Sz〉 [13] and the moments〈(Sz)n〉0 (n = 2, 4) are calculated from the
RPA Green’s function for spinS as described in [5]. One obtains

〈Sz〉 = [S − ϕ(S)][1 + ϕ(S)]2S+1 + [1 + S + ϕ(S)][ϕ(S)]2S+1

[1 + ϕ(S)]2S+1− [ϕ(S)]2S+1
(37)
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〈(Sz)2〉0 = S(S + 1)− 〈Sz〉(1 + 2ϕ(S)) (38)

〈(Sz)4〉0 = S(S + 1)
[
8ϕ2(S) + 8ϕ(S) + S(S + 1)

]
− 〈Sz〉[24ϕ3(S) + 36ϕ2(S) +

(
14 + 4S(S + 1)

)
ϕ(S) + 2S(S + 1) + 1

]
(39)

where

ϕ(S) = 1

N

∑
k

(
eβE

α=0
k − 1

)−1
(40)

whereEα=0
k is the RPA dispersion relation, equation (30).

Figure 3. The temperature dependence of the effective lattice anisotropy coefficientsK2(T ) and
K4(T ) of a square Heisenberg monolayer calculated with thermodynamic perturbation theory. The
magnetization is determined with MFT and the RPA. We have usedJ/B = 100, and (a)S = 2,
(b) S = 10. To allow for a comparison between different spin values, the interaction strengths are
scaled according toJ → J/S(S + 1) andB → B/S.

In figure 3 we compare the temperature-dependent anisotropy coefficientsKn(T ), equ-
ation (34), forS = 2 andS = 10 calculated with the MFT and RPA. We useKn = 1,
and in order to obtain an appropriate scaling for different spins we putJ → J/S(S + 1) and
B → B/S. The resulting behaviour of theKn(T ) calculated by the RPA differs markedly from
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that obtained from MFT, particularly at low temperatures. Whereas theKn(T ) as obtained
within MFT show an exponential decay in this temperature range, those calculated using
the RPA decrease more rapidly and exhibit a nearly linear behaviour. One also observes from
figure 3 that theKn(T ) calculated with the RPA decoupling exhibit a much weaker dependence
on the spin valueS than those calculated with MFT.

5. Conclusions

In order to assess quantitatively the accuracy of Green’s function decouplings, we have
calculated the magnetization for a Heisenberg Hamiltonian consisting of an isotropic exchange
interaction and an applied magnetic field for two systems for which exact solutions are available.
In particular, a spin pair with arbitrary spin quantum numbersS (we have usedS1 = S2 = 1
as an example) as well as a single square layer withS = 1/2 were investigated. We have
demonstrated that the RPA and the Callen decoupling of a many-body Green’s function theory
represent an acceptable approximation to the exact results. Both approaches furnish a much
better description of the magnetization than the mean-field approximation, which is expected to
yield poor results for such low-dimensional systems. For the case of the Heisenberg monolayer,
we have used as a reference the results obtained from a quantum Monte Carlo calculation [8].
In this case, the Callen decoupling yields worse results than the RPA decoupling, even though
the former includes more correlations. This is consistent with the fact that the magnetic
ordering temperatureTc for bulk lattices is better approximated by the RPA than by the Callen
decouplingfor low spinsS. However, for larger spinsS, the latter method yields improved
values forTc [7]. Thus, to test the accuracy of these different approaches for a thin film
for general spinsS it would be highly desirable to perform QMC calculations for largerS.
Note, however, that although the Callen decoupling does not seem to yield better results for
the magnetization as compared to the computationally simpler RPA method, it exhibits an
improved description of the free energy (even forS = 1/2) at elevated temperatures [14],
because it yields results closer to the paramagnetic limit.

Because of its importance for the orientation of the magnetization, we have calculated
the temperature dependence of the anisotropy coefficients,Kn(T ), by use of a thermodynamic
perturbation theory. The fairly good approximation of the magnetization calculated with the
RPA decoupling as shown by the comparison with the exact results of the QMC method
(cf. section 3) suggests that the calculated effective anisotropy coefficients are also well
approximated by applying the RPA. It turned out that the temperature dependence of the
anisotropy coefficients calculated by using the RPA shows significant differences from that
calculated using the MFT, in particular at low temperatures. A second important result is that
the spin dependence of theKn(T ) is much weaker in the RPA than in MFT.

Note that in using thermodynamic perturbation theory the consideration of an applied
magnetic field is essential, since an isotropic 2D Heisenberg magnet does not produce ordering
at finite temperatures, in contrast to a 3D system [11]. The magnetization, and thus the effective
anisotropies, depend on the magnetic field. We emphasize that without an applied field, the
magnetic anisotropy cannot be handled as a small perturbation. In this case, the anisotropies,
which consist of the lattice anisotropy and the long-range magnetic dipole coupling, must be
treated on an equal footing with the exchange coupling. In order to determine theKn(T ),
the free energy,F(T , θ) in equation (32), has to be calculated as a function of temperature
and polar angleθ . For this purpose, the Heisenberg spins have to be rotated by the angleθ ,
and appropriate decoupling procedures for the Green’s functions occurring have to be applied,
e.g. along the lines proposed in reference [15]. Work in this direction is in progress.
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